Tag: ecosystem function

Giving Tuesday – How I’m making my money count towards climate change

On #GivingTuesday (and every month after), I want to make sure my donated money counts toward addressing climate change. The easiest route might be to donate to large international climate policy advocacy groups like 350.org, or land conservation organizations like The Nature Conservancy. In doing research on these organizations, I can see clearly they are working to address climate change, the breadth of their work is so impressive. But I decided they don’t really need my money; I’d rather start at home.

But where to start? There are a lot of actions that fall into the rubric of “climate change action.” So I’m using Biomimicry Chicago’s Deep Roots Initiative (DRI) conceptual framework to make sure my donations fall into different categories of action that both regulate climate and support resilient communities (which in turn do a better job regulating climate). Each of these six categories is important to creating a stable climate.

 

Complete Copyright

 

Next, I’m starting at the top of Project Drawdown’s ranked list of climate change solutions to make sure the organizations I’m donating to are implementing programs that will have the biggest impact on climate change (and which make sense for my region). I added these solutions into my DRI framework categories and came up with a list of organizations implementing relevant local solutions. These are the local organizations I can support to make an impact on climate change!

Donations chart

As you’ll notice, Project Drawdown solutions are focused specifically on carbon sequestration, so solutions in water and biodiversity are not specifically mentioned in their list. But as we learned from ecosystems through our DRI process, all six categories of system functions – carbon, water, energy, materials, biodiversity and social organization – are critical for maintaining a stable climate.

You can use this approach to create your own list of local organizations that will give you the biggest bang for your buck in addressing climate change on #Giving Tuesday – and everyday thereafter! Have fun!

Links to organizations listed above:

Our Built Environment: My Current Reading List for Shifting Paradigms

The more I think about the challenges facing us (humanity) and the opportunities to use biomimicry for innovation in the built environment, the more I believe that we can come up with super cool solutions using biomimicry for any challenge, but unless the fundamental assumption of everyone at the design table is that our built environment is dependent upon, participates in and can support thriving local ecosystems, we will produce solutions that will ultimately fall short of embodying the shift we want and need to see in the way we live life on this planet.

I also believe that once designers come to the table with a basic scientific understanding of our entwinement with the life around us, a whole new world of creative opportunity opens up to not just design and build a structure that solves for human needs, but rather design and build a multifunctional, responsive structure that is a participant in a complex web of life. The next question then becomes, what else can the structure do?! Biologists at the design table can help work with designers to answer that question.

There is incredible thought leadership and work being done around the world to try to reconcile how we can put into words and practice these ideas of shifting a built environment designed to sit upon a landscaped into one that lives within it. The related articles at the end of this post were shared with me by biomimicry colleagues (thanks Josh Stack, Jane Toner and Norbert Hoeller!) and are on my reading list to help me wrap my head around how these ideas fundamentally change our approach and how we move forward.

My thought is, imagine if a region could get together to establish that fundamental assumption for itself – bringing together designers and decision-makers from all functions and scales of the built environment to agree that all design should strive to support fundamental ecosystem functions using local native ecosystem metrics. Each participant in this collective leadership could influence their own piece of the puzzle (playing out in various industries and scales) while at the same time considering and building in mechanisms for how their piece fits into, can respond to and support the whole.  Can it be done?

At Biomimicry Chicago we are boldly imagining such a future for the Chicago region through our Deep Roots Initiative which we are kicking off with our Deep Roots Workshop April 21. We want to explore these ideas and see if/how we can put these ideas to practice. There is incredible work being done in Chicago in trying to address multiple challenges having to do with various ecosystem functions at multiple scales. We have an opportunity to come together to understand how they are all interrelated from an ecological perspective, define what is ecologically “sustainable” for the region and set an overarching framework of goals to strive for. Our subsequent measures of progress as we intentionally restore ecosystem functions in our built environment will then have a scientific basis for assessing whether or not we as a region are truly on the path toward “sustainability.”

The more minds thinking about this, the better. I encourage you to feel free to share more resources in the comment thread below. Only together can we change our story!

Inspiration to Brainstorming: Biomimcry Global Design Challenge – Climate Change

Following up on something I have been thinking about since my post on inspiration for the Global Biomimicry Design Challenge on climate change, I thought I’d share an example of my thought process on using natural models for initial brainstorming. This is my first pass and I haven’t dug deep into the science, but am testing the waters on a high-level idea. So bear with me as I try to wrap my head around this one – energy and associated system cycles. I have more questions than answers as my thoughts are only (maybe not even) half-baked – maybe you can help me out. Or feel free to use my ideas to add to yours!

Last week I was talking with my colleague about various major categories of ecosystem functions. Her diagram had five categories, including “energy” and “carbon”. In looking at the diagram however, I realized that this perspective separates out two components that are fundamentally part of, but not even all of, one system. Does combining the conversations of carbon sequestration and energy efficiency into a comprehensive discussion about the entire system around energy beyond just the carbon cycle, with a comparison to the natural model, provide an avenue to identify missed opportunities to balance things out?

When we talk about energy it is almost always purely in the mindset of procurement/consumption. Energy flow is one way – we dig it up/suck it up/soak it up/stick a turbine in it and gobble it up. What’s the result? We put that energy to work for us in various ways that fuel our activities – cooking, transporting, building, farming, etc. The end result is that that energy once used is gone, but the benefits we reap from consuming it might live on in the form of something made (cooked food, a product, a house, a road…). Doing more with one unit of energy is how we improve efficiency. In the sustainability realm the conversation about “energy efficiency” is sometimes shifted to “carbon management” in recognition of energy consumption (specifically when it’s carbon-based) as a component in the larger carbon cycle.

When we talk about carbon sequestration it’s often a kind of nebulous, unseen phenomenon that most people don’t understand. We know it’s part of the carbon cycle and is a component we have increasingly realized we need to address because there’s this vast amount of carbon dioxide accumulating in our atmosphere and changing our climate. So we also relate carbon sequestration to energy in the realm of the need to pull back out the carbon dioxide emitted during the burning of fossil fuels and organic matter to help balance the carbon cycle. But this discussion is not often expanded to be related to a comprehensive picture of energy beyond a discussion of carbon dioxide. And while carbon dioxide is our main concern, maybe an analysis of the whole system could identify opportunities we might otherwise miss.

In nature, energy procurement and consumption is fed by the sun, but the story of energy is not just about carbon dioxide. It involves an intricate dance of several inputs and outputs in the system enable it to stay balanced in perpetuity – everything is used and recycled with the exception of heat. Not true of our current human system. Even when we look to understand photosynthesis for the conversion of radiant heat to energy to try to replicate that natural model (solar panels), we choose to basically ignore the whole sequestering of carbon dioxide, use of water and releasing of vast amounts of oxygen, water and carbon dioxide thing that occurs in photosynthesis too – we’re just interested in the conversion of energy from one form to another. Are we missing vast components of a balanced system and thus opportunities to greatly improve our design? What if we tried to mimic the functions of the entire natural system of inputs and outputs to restore balance?  

I’ve already talked about how our energy systems have knocked the carbon cycle out of balance. So, using biomimicry, if we want to use the plant energy cycles – complete with the inputs and outputs – as a model for our energy systems, we need to understand nature’s energy system first and then draw metaphors. Easiest thing to do is to draw a picture!

The following diagram shows an overall simplified cycle of inputs and outputs involved in photosynthesis, plant growth and energy flows supporting the food web (that’s us in the “animal” block). (Photosynthesis is the process in which radiant energy is turned into chemical energy in the form of sugars, which are the building blocks for plant structure (starches) as well as immediate energy for plant growth. That stored energy in plants is the energy that gets passed up the food chain from herbivores to carnivores and everything in between.)

Nature's model

The above diagram shows how the byproducts of each step contribute to critical resources for other steps in the process, creating a closed loop with the exception of the renewable energy input of the sun and outputs of heat. It’s brilliant.

Contrast that with examples of our energy systems. The following diagrams also show simplified energy flows in human-designed systems.

Human model

Okay, so now we have an overall idea of how these both work. Notably for me, neither of the human-designed energy systems result in closed loop cycles of inputs and outputs. The solar obviously resembles more closely the procurement and conversion of radiant energy at a site, similar to a plant. I don’t know enough about energy systems to know how to wrap my head around the conversion of radiant energy to electricity vs. chemical energy – that’s above my pay grade for this blog post! So let’s keep it simple for now (but if you know, let me know a good resource to find out more!).

In looking at the coal-fired power plant example, you’ll notice that the inputs include coal, oxygen (O2) (oxygen needed for combustion of coal) and water. In looking at the energy cycle of the food web, you’ll notice that the inputs and outputs are similar to that of an animal – animals consume glucose (stored energy) from plants or other animals that have eaten plants. Animals also consume oxygen which is needed for chemical reactions that result in growth (for the metabolic process). So we might draw the following metaphors included in the above diagram:

  • Oxygen = oxygen (needed for a chemical reaction
  • Coal = stored chemical energy (sugars) (this is the fuel)
  • Power plant = animal
  • Use of electricity to build structures = metabolism (growth)
  • Battery storage = maybe ATP? (adenosine triphosphate, or “the ‘molecular unit of currency’ of intracellular energy transfer”)

(Since I have not spent more than today on this, my metaphors might be off. What do you think?)

If you agree for now that we might draw a metaphor between animals and our human-made power plants, what does that mean for our overall cycle? To me it means our current design is missing a plan for the majority of the system needed to maintain the required balance for stable system functioning (as evidenced through climate change). The question is, how can we think about our energy systems more holistically and model them after the original power plants and energy webs?

If we go with the above, and our current energy system design only includes the “animal” component of the larger system, what if we expand our discussion of “energy” to include the entire cycle of inputs and outputs to understand how we can design an energy system that fits within the natural balance to maintain climate stability? Who uses energy in the system and how? What do they produce as a byproduct of using that energy? What questions does that raise about our systems?

  • Need for balance of inputs & outputs: the consumption and sequestration of carbon dioxide (CO2) and water (H2O) with the release of oxygen (O2), carbon dioxide and water. If fossil fuels and other biomaterials aren’t burned for energy at all, obviously this changes the equation and reduces the burden on the system to sequester carbon dioxide (once restored to a balance from the current state, and this of course ignores whatever inputs and outputs for making the product (e.g., a solar panel)). But since we aren’t flipping the switch on fossil fuels any day soon, we need to find ways to bring the carbon cycle back into balance. And what about the release of oxygen in the process – what part of our system might generate oxygen as a byproduct?
  • Forms of energy: What would a system look like that relies on local real-time renewable conversion of radiant energy to, and storage of, chemical energy that is in a form readily accessible for use (as opposed to use of non-renewable storage of radiant energy captured in fossil fuels and turned to electricity)? Lots of solar cells (produced with solar energy sources!) and batteries? Any other options?
  • If plants (real plants, not human power plants!) are the consumers of carbon dioxide in our natural model, what would be the equivalent of a plant in human energy systems? Manufacturers creating raw materials? Does that reveal the missing link in our system – manufacturers who convert radiant energy on site to fuel their own manufacturing processes (core needs) as well as build raw materials (which form the basis of structures) from carbon dioxide? If so, we clearly need to rethink the potential of a hugely (over) abundant (free!) resource – carbon dioxide – as a building block for materials. Some materials manufacturers are already thinking this way, but if this is the key to balancing the cycle, we need some serious widespread innovation using carbon as a fundamental building block of many more our materials.
  • Can we use the energy flow of a food web to think more about how the supply chain beyond materials manufacturers plays a role – what’s the equivalent of a herbivore (e.g., a manufacturer turning materials into some form of product?), omnivore or carnivore in human systems? Do they exist in the same type of balance we see in land-based food systems (i.e., does it turn out we have an overabundance of “carnivores” requiring high energy inputs?)? If so, by increasing energy efficiency are we creating more “herbivores” ??
  • We’ve cut down a lot of plants – trees to be more exact. Whenever you see green, you are looking at the sequestration of carbon dioxide in materials. It would be foolish to think we shouldn’t also be restoring natural systems to leverage their ability to pull carbon out of the atmosphere. But to what extent? This thinking is reflected in E.O. Wilson’s Half Earth initiative.

Oh, so many more questions than answers! 🙂

My brain is spinning so we’ll have to leave additional pondering for another day. Next steps for me if I were to pursue this further would be to do a deep dive into the science to find out more specifically how this works each step of the way. Next I would then recheck my metaphors and make sure that everything actually makes sense – for every single part of the system. This is where the fun happens – you never know what you’ll find out.

What flaws do you see in my thinking? If any, how would you rewrite those metaphors in line with your thinking? What can you add? How can we build on this? How might you go deeper? What are the right metaphors? What is the natural model equivalent to “electricity”? Or am I totally off base? I’m excited to see what comes out in the Project Drawdown initiative to see if/how their recommendations line up (or not) with this thinking.

An Open Letter to Matt Damon and Water.org

Dear Matt Damon,

I don’t know you, but I want to thank you for showing up. I admire your passion for tackling a problem few in the general public are thinking about – access to clean, affordable drinking water and sanitation. The organization is doing incredible and important work and I hope to see your efforts with Water.org and Stella Artois succeed. However, I was struck by the disconnect between a quote from you at the World Economic Forum in Davos which read, “Access to clean water and sanitation is just not something we think about, we solved this problem in the West 100 years ago…”, and the reality faced by many regions in this country – looming water shortages. You see, the problem is far from solved in the West. Indeed, while we have figured out the engineering behind drinking water and sanitation, we’ve done it at a high cost – for decades we’ve been borrowing from the future. And the “future” consequences? That future is now.

Our approach to water in this country has generally been one of unfettered use of water combined with infrastructure that sheds water extremely efficiently from our buildings and roads into nearby streams and rivers never to be seen again. But these human systems don’t take into account how and why the water got there in the first place, and don’t recognize why we are slowing running ourselves dry.

Water is life. Plants hold on to water. In drier places, if there is excess the plants store it away in aquifers below ground to access in times of drought (it’s called hydraulic redistribution). Come to a prairie in the summer during a rainstorm and you’ll find no runoff. In wetter places, the plants capture it, breathe it out as water vapor and release organic aerosols which induce the water to fall back down again. Step into a rainforest and you can’t help but feel the water surround you like a blanket and squish underneath you. These water cycles affect weather patterns that define ecosystems, and the ecosystems themselves influence those patterns.  

Everywhere we live in the western world, our developments disrupt and displace these water cycles by taking away the species and systems that perform the functions of recharging groundwater and replacing them with agriculture or infrastructure that does not. The result is increasing costs and decreasing supplies. In my home region of Chicago, water shortages loom for huge populations living off increasingly concentrated aquifers. In our specialized world, no one seems to make the connection between our disruption of natural water cycles and our water shortages. Were we to try to build back in the functions embodied in native ecosystems present before development, starting with the principle of treating water as the precious resource it is and thus holding onto as much of it as we can, we would go a long way towards addressing our current water crises, especially in light of increasing uncertainty in weather patterns caused by climate change.

So if ending the “global water crisis” is really your goal, I implore you to think holistically about water as you work with Water.org and Stella Artois to bring drinking water and sanitation to millions of people around the world. Adopt a fundamentally different approach to your work than that embodied in western infrastructure – use one that learns from and encourages other to emulate the incredibly resilient and sustainable strategies embodied in ecological systems. Take this opportunity to partner with communities to create truly long-term water management solutions that ensure the availability of drinking water for generations to come. Otherwise, you will replicate the mistake of borrowing from an increasingly uncertain future. It’s a mistake these populations can’t afford.

Sincerely,

Rachel Hahs