Tag: biomimicry thinking

Why Winning Slowly May be the Same as Setting the Stage for Derailment

IMG-3254

Considering the current political climate and state of affairs (like increasing inequality and a drive to pull out social safety nets for…everyone) in the United States, I thought I’d revisit Ecology of Commerce (revised edition) by Paul Hawken. The scenario playing out right now in our government perfectly embodies his statement that, “You cannot protect a system that is rigid and entrenched without sacrificing the interests of the people it intends to serve.” Our government and the corporate interests it loyally serves is sacrificing away. The gulf between “what might be” and “what is” seems wider than ever. Perhaps that is because we are at the precipice of a new age.

I’ve been experiencing cognitive dissonance between my privileged existence and the realities of an accelerating deterioration of our local ecosystems and climate and communities. As Hawken says, “We have reached a point where the value we add to our economy is now being outweighed by the value we are removing, not only from future generations in terms of diminished resources but from ourselves in terms of unsustainable sprawl, deadening jobs, deteriorating health, and rising crime.” I hear the warning sirens from experts like Bill McKibben (Winning Slowly is the Same as Losing) and see the unreal have to be pulled into the norm. It feels like a downward spiral, with a hope for the future based on something increasingly unattainable. The reality is that way I live, despite my attempts at minimizing impact, is part of the problem. But I’m not sure where to go with that knowledge. To a large degree (as evidenced by my lack of posts on my blog over the last several months), I feel paralyzed.

I can see why Hawken focused his efforts on Project Drawdown, as the solutions he posits in Ecology of Commerce are pie in the sky, while Project Drawdown focuses on making it real. There are concrete (for lack of a better word) steps to take to address climate change. They are right there – 100 of them – researched, served up and ready to be acted upon. One of Hawken’s hopes in Ecology of Commerce is that small businesses will pick up the charge should a “revitalization and revisioning of incentives…liberate the imagination, courage and commitment that reside within individuals who truly want to make a difference – ‘ecopreneurs’ dedicated to restoring the world around them for the world that comes after them.”

My worry, similar to experts like McKibben and Hawken, is that it just can’t happen fast enough. That the massive brakes needed to stop this freight train traveling at full speed with cars full of oil and coal as far as the eye can see just don’t exist and will never exist. Perhaps it’s just not possible to slow it down.

Of course, there is another option – destroy the tracks and derail the train.

While the US government seems to lack any ability to “revision” anything other than how to consolidate power and defend the status quo for the indefensible, it’s the small efforts by individuals, non-profits and small businesses – and many of them – that perhaps are my greatest hope. This hope actually emerges from biomimicry research I started in my graduate program and plan to pick back up in 2018 – research focused on how invasive species disrupt systems quickly.

In researching invasive species, I’ve learned that invasive species aren’t considered invasive until seemingly all of a sudden they have widespread economic and environmental impact (“impact”, of course, being largely defined through the lens of human enterprise). At that point, you might say the ecosystem goes off the rails – ecosystem interconnections  and resource flows are changed, sometimes irreparably so. In some cases, the eventual result is a state shift to an alternative stable state, never to shift back.

But at the point of perceived sudden widespread impact it’s not that they came out of nowhere, it’s that their small, dispersed populations went undetected or seemed insignificant (to us) AND the ecosystems in which they got established had their weaknesses. Our current systems, while being shored up by governments and increasingly walled off from the masses by corporations driven by perverse economic incentives, have clear weaknesses. The increasing number of efforts around the world to establish a different kind of system based on different criteria with different goals perhaps will eventually emerge at a large overlapping scale and shift us into a new age, the “alternative stable state” Paul Hawken and others have been talking about for decades.

This shift will derail that freight train relatively suddenly, and as with the real thing, it probably won’t be pretty. I don’t know what will emerge on the other side, but it does give me hope that the groundswell of efforts around the world, while seemingly insignificant at the moment, do actually have the potential for widespread, fast impact. When that will happen is anyone’s guess. But I hope together we can lay the groundwork to make sure that what emerges on the other side is restorative and generous. As Hawken writes, “Industrialism is over, in fact; the question remains how we will organize the economy that follows.” So let’s get on with it. Let’s change our story.

From an Expert Manager of Things: Disrupt My Garbage Bin, Please!

Photo: https://trashbackwards.files.wordpress.com/2012/04/jumble.jpg

Trying to give away or get rid of a Whole Host of Things from our house, I decided I should add a “Manager of Things” title to my resume. I have become a truly reluctant expert. This last round of Expunging of Stuff saw me spend literally an entire day trying to give a Carload of Things away (not to mention the time previously spent to sort and separate), only to come back home with a third of it. My goal was to not throw anything away. I failed.

As an Expert Manager of Things, I’ve learned what can and can’t be recycled (hint: not much can be easily recycled), what Things secondhand stores are willing to take and what they’re not (especially when it comes to Children’s Things) what Used Things people are willing to pay for – which have just enough value that people will come pick them up but not pay for them, and which have no value (unless you’re very patient with space and time to spare), and how arbitrary and relative price can be (how soon do you need to get rid of it, how badly do you need the money, how many people actually want the Thing, etc.).

For anyone who manages Stuff in their house, you know what I’m talking about when I say that the Shuffling of Things from one pile or shelf or room to another and eventually out the door to Somewhere Else is a perpetual pain in the rear. Particularly if you have children, the amount of Stuff is overwhelming and much of it is crap. My threshold for the Random Stuff that finds it way onto our counters and furniture and into our car is just about at its peak. This results in a less careful approach to disposal. I’ve become an expert at discretely putting Things into the free giveaway pile under our front porch (avoiding the watchful eyes of my children), but after learning that most Children Things can’t be recycled or even given away, more and more Stuff ends up in the garbage for a lack of any other option.

Reflecting after my latest effort to move a carload of things into other people’s hands and NOT into the garbage, I recognize my efforts are tantamount to an extreme behavior in the United States, Land of Stuff. But even for people like me, the options are limited by both the disposal methods available, government safety regulations preventing the resale of some goods, and the failure of our economy to place value on design and manufacture products that can avoid the garbage dump. While the generation and management of waste has improved in the United States over the last 30 years, the reality is that people still throw the majority of their Things into the garbage, with only about a third of waste going to recycling. Even when recycling and composting are provided by municipalities, waste streams still get contaminated by uneducated individuals (a perpetual problem at the last rental we occupied), and even if you do your best, the waste hauler might just take it all to the landfill anyway.

It’s stupid and stresses me out. The thing is, every Thing is a physical manifestation of something taken from the earth. Our economic priority to willfully ignore the full impact of each Thing is driving us (or already has?) towards irreversible ecological system collapse – mind you, these are the very systems that support the survival of our own species. Therefore, for every Thing that comes into my hand, I have a heavy heart for what it represents. But I also see huge opportunity. We have the ability to make choices, and there are opportunities at all levels of the system to change behaviors and processes. It does not have to be this way. At all.

But we’ve made it easy to forget this is a problem – you just put Things in the garbage bin and you never have to see them again. Off your conscience. It’s too easy. And it lets consumers, government and designers off the hook. We all have to do better. And this pile of garbage? It’s ripe for disruption.

Circular Economy

The Ellen MacArthur Foundation’s (EMF) circular economy push is a step in the right direction. Aiming to “redefine products and services to design waste out, while minimising negative impacts,” the foundation looks to rethink and redesign entire systems. This is inspired by the fact that in natural systems there is no waste – all byproducts are raw materials for something else in the system, and any byproduct that isn’t used efficiently is an opportunity for innovation and a new niche to be established in the system. These niches add the value of complexity – diversity, redundancy and variation – that make systems resilient. Circular economy advocates ask, why can’t we do the same?

In October, I was fortunate enough to attend one of EMF’s CE100 member  “acceleration workshops” in Chicago on behalf of the Biomimicry Institute. I was able to see firsthand how companies large and small – retailers, commercial goods manufacturers, government agencies, the food industry – are grappling with what the circular economy actually means in practice. It’s not clear to most of them, but the energy and interest in figuring it out is strong, from trying to figure out new retail and take-back models to overcoming the structural deficiencies of recycled plastic. Just check out the Disruptive Innovation Festival this year (DIF 2017) to see how people from across the spectrum are working to make it real.

Starting with The End

Going back to my recent failed effort to avoid throwing Things in the garbage, I can’t help but think that any effort to transition towards a circular economy (or something similar) must start with what happens to the product at the end of its life. The questions must be asked at a minimum:

  • What disposal options are available to the consumer?
  • How likely are they to use the option I am considering, and is it even available to the majority of my typical consumers?
  • How much time will they dedicate to disposal/handing off of my product?
  • What behaviors do they currently have around “waste” disposal?
  • If they must shift their behavior to do what I want them to do, what would incentivize them to do so? Is that realistic?
  • How can I make it as easy as possible?
  • How can I leverage behaviors they already have to achieve my goals?
  • Do I need to think bigger and change my business model?

Speaking of disposal options, I can’t help but wonder: what if all local governments mandated that all waste must fall into specific categories with no waste to landfill allowed? What if residents had to consciously think about what they brought into their house knowing they would be heavily fined or inconvenienced if they couldn’t recycle, compost or hand it back when they were done with it? What kind of bottom up consumer pressure would that put on retailers and back up the supply chain to the design table? Or what if municipalities made waste companies pay to pick up their valuable byproducts (which we currently call solid waste, but they should hire marketing professionals to change the narrative!) – would the companies still throw everything in the landfill? Talk about disruption.

A select version of that has happened in Illinois – electronic waste is no longer allowed in the garbage. The reality of this regulation is that informed residents are reliant upon municipalities to offer them options for disposal. If the municipality doesn’t communicate about the regulation, only offers a drop off window one day a year, or simply doesn’t offer any help because of budget issues, people may throw small Electronic Things in the garbage anyway. Maybe residents will find a local retailer willing to accept Select Electronic Things, but there are few, if any, incentives to go the extra mile.  And that’s for those who are informed. Me? I put Electronic Things on top of my garbage bin and scrap collectors that roam our alleys pick them up.

But okay, let’s be realistic. Municipalities (made up of elected officials) aren’t going to all of a sudden turn the tables on solid waste for their own constituents. So what are our options?

We could encourage consumers to be obsessively vigilant about what they let into their homes to prevent having to throw as much Stuff away in the first place, and if it is something that will eventually be discarded, they can make sure the products they buy are made to be reused by someone else, recycled or composted. Oh wait, I said I’d be realistic. Scratch that…

Getting Down to Business

Okay, so let’s move onto business. EMF is focusing their efforts on businesses for a reason. There is incentive for businesses to try to tap into the circular economy craze. The amount of inefficiency in our current system designated as “waste” is obscene, and the potential to turn that “waste” into money is enough to set any businessperson off rummaging through one of the many Blue Ocean gyre garbage patches or the nearest beach. But they might just have a look in their own garbage bin for inspiration.

Based on my own experience, there are clear opportunities to identify linear waste streams that are overly ripe for disruption, even if you just limit yourself to Kids Stuff:

To be clear, I wouldn’t have time to go to eight different places to properly pass on these eight different categories of Things (although, okay, I admit I might do it anyway, but the average person probably would not). Solutions need to make it easy for the consumer to pass Things onto their next phase, which is why I think often solutions might come down to changes in business models that incentivize behavior change.

Some companies looking to close the loop on waste generated by their own products that can’t be handled by traditional municipal recycling programs are partnering with TerraCycle. TerraCycle aims to make recycling easy, and has figured out a way to recycle most “non-recyclable” wastes. Their programs are free (funded by these partner companies) for generators of waste – individuals, schools, anyone – and even raise money for charity. Their efforts are impressive, and they clearly have honed in on a part of the market that is wide open. However, while the TerraCycle solution addresses “end of pipe” issues, we’re still talking about waste generation at a massive scale.

At an even larger scale before anything gets to my garbage can, the U.S. Materials Marketplace “facilitates company-to-company industrial reuse” where ” industrial waste streams are matched with new product and revenue opportunities.” The platform is growing and used by hundreds of companies to start to close the loop. The potential to leverage circular economy opportunities in business-to business scenarios is enormous. Yet most of these businesses are in the supply chain for and/or make products that eventually end up in our homes and offices. And there it still is, the pile of stuff in my home that I couldn’t do anything with but throw away. This has to be addressed at the front end of design.

Designing Value In

So we’re back to the literal drawing table. Unfortunately, businesses and designers that operate in a consumer-based linear economy in which business has no responsibility for waste and sees planned obsolescence – literally designing value out of a product by ensuring it’s useless after a short period of time so the consumer has to buy another – as a serious business driver might have insurmountable challenges conceptualizing and rethinking their products and business models within the circular economy. However, for those ready and willing to make the transition, using biomimicry tools can help jumpstart and guide the redesign process.

So how can designers design products or even business models to fit into circular economy models? (check out these EMF case studies for examples!) Using biomimicry in the innovation process can help with both understanding and identifying opportunities at the system and business model scales, as well as solving specific product design challenges that might arise, such as when trying to substitute materials or redefining how to deliver the same function as the old product, but in a completely new way.

A good place to start when thinking about how to deliver a product with the big picture materials systems in mind, we can look to biology to understand the strategies for how to design “products” that fit into it. At a high level when using the biomimicry methodology, we can look to Life’s Principles such as:

  • Use Life-Friendly Chemistry – This seems obvious, but understanding and deliberately designing products with materials that benignly interact with life throughout their own life-cycles is critical – green chemistry efforts bring us closer to making this a reality. Even Life’s un-friendly chemistry (like snake venom) decomposes into benign elements.
  • Break Down Products into Benign Constituents – Speaking of decomposing, every material created should break down into something harmless and useful for another purpose, non-toxic elements that won’t harm humans or any other life when recycled back into the environment. This must be an imperative from the outset when choosing materials in the design process.
  • Build Selectively with a Small Subset of Elements – Often times human-made materials are made with many elements of the periodic table, many of which life never uses and for good reason – they are often rare and/or hard to access, toxic, particularly when concentrated in large quantities. Instead, life creatively uses only a few abundant elements as building blocks to achieve an incredible array of forms and materials through variations in structure. Our materials too should be limited to life-friendly elements of the periodic table – what elements are avoided by life, and/or when rare elements are used, why and in what forms and quantities? How too can we take advantage of abundant elements to create diverse materials?
  • Do Chemistry in Water – Life uses water as a solvent and we should too. Water has incredible properties – if we can learn to leverage them, our chemical processes would significantly improve their impact. Biology has a lot to teach us about this!
  • Use Low Energy Processes – Life does chemistry at ambient temperatures. How can we rethink the way we process and manufacture materials and products to leverage existing energy flows?
  • Use Multi-Functional Design – Life’s designs are elegant, achieving myriad functions with one simple solution. How can we more effectively engineer designs that provide multiple benefits to the user with more than one use in mind, reducing the number of individual products needed? Smartphones have disrupted so many industries because they serve multiple functions in one easy-to-use piece of technology. Where can that strategy be replicated?
  • Recycle All Materials – This a no brainer when we’re talking about the circular economy. This is fundamental to the way nature works. Again, an understanding of the end game should happen during the design process. And to cycle back, at the outset of the design process finding opportunities to use “waste” materials in your own product starts to build that circular and self-supporting economy.
  • Fit Form to Function – Achieve function through elegant forms that require less energy and material (and are manufactured using low energy processes!). How can you achieve better results through intentionally using form to achieve function(s)?
  • Use Readily Available Materials and Energy – Products are often made of materials that are made with raw materials sourced on one continent, processed and or manufactured on another, then shipped to another continent (many even back to the same one!) to be put into a product that is then sold all over the world – a hugely energy intensive process that often relies on fossil fuels obtained who knows where. Birds don’t fly to Canada to gather materials, then bring those materials back to the Amazon to make a nest, then bring that nest back to Texas to have babies. We know that would be absolutely ridiculous. What materials exist locally at each of your manufacturing plant locations? Are there currently undervalued consistent “waste” streams that you might use? How might using local materials reduce risk and increase the resilience of your supply chain?

As we wrap our heads around what redesigning products for the circular economy looks like. biomimicry can be an important tool for helping design teams make these transitions – significantly broadening their thinking, providing inspiration with brand new ideas and science literally no one has seen before, and starting to shift concepts of what’s possible. But once we know the goals and think about how systems might begin to shift, it’s often hard to practically conceptualize and embody these principles in an actual product.

In addition to using Life’s Principles as a framework to think about design implications for the circular economy at a systems level, biomimicry also has a lot to contribute to the innovation process in looking to organisms to solve for specific, practical design challenges. Life has myriad solutions to kickstart and guide that redesign process, offering up a treasure trove of ideas that can help build a roadmap for short-term tweaks to long-term aspirational paradigm shifts. Critical to discovering design breakthroughs is ensuring that during the biomimicry process the design team digs deep into and stays true to the science they are mimicking including the system in which that organism operates – context, raw materials, manufacturing process and end of life.

How are (or might) you use biomimicry to transition to the circular economy? And please, start by looking at the piles upon piles of Things leaving our houses with nowhere to go – the pile is ripe for disruption! I’d love to hear about and showcase your efforts. Let’s change our story!

Biomimicry is Hard

Okavango Delta, Botswana

Biomimicry is super fascinating, awe-inspiring, fun, engaging and a great way to lose yourself down many, many, many rabbit holes…but it’s challenging. Just like when you’re going to have a baby, no one tells you how hard it will be! I’m telling you up front, practicing biomimicry is hard. But so worth it.

Biomimicry requires your brain to twist itself in knots trying to translate challenge to biology to challenge to biology to challenge…in a seemingly endless iterative process. And if it’s a metaphorical application, forget it. All your RAM is taken up and in the background your hard drives are being rewritten and somehow you have to figure out how to think again…in a world that hasn’t changed, but somehow everything is different.

And then you have to communicate it. No one knows what biomimicry is, so you have to start by educating your audience in a way that allows them to make the leap with you as you describe an idea unlike any they’ve come across before. Months or years of work reduced to an easily digestible two-minute elevator speech. And still you know you’ve only scratched the surface and the possibilities of your ideas are endless. How to decide where to take it next…

Full disclosure: no one said it would be easy.

A couple of years ago when I was completing my last biomimicry project for my professional certification/MS, I came to a point in the project where I literally had to step away from everything else so I could focus just on my project. And I had to go back to the basics – I needed to get those little hamsters running in my brain to shift the cogs and process months of research into coherent thoughts. By the time I finished my project, I was happy just to end up with a working metaphor. I had more questions than answers.

I’ve taken a hiatus from my blog over the last several weeks as my brain has been working overtime trying to figure out how to refine and communicate two very different and complex biomimicry-based ideas in bite-sized chunks to people with a wide range of biomimicry knowledge. All the while realizing and exploring the potential depth to which branching ideas expand upon the core idea without losing sight of that very idea. But see, the kicker is, the ideas could be game changers. And like so many other biomimicry-inspired ideas, the potential lies in actual implementation. So I’m rolling up my sleeves. I’ve got work to do.

While my brain is playing catch up, please enjoy Part 1 of my newest photography collection from Botswana. I promise I’ll be back soon.

Inspiration to Brainstorming: Biomimcry Global Design Challenge – Climate Change

Following up on something I have been thinking about since my post on inspiration for the Global Biomimicry Design Challenge on climate change, I thought I’d share an example of my thought process on using natural models for initial brainstorming. This is my first pass and I haven’t dug deep into the science, but am testing the waters on a high-level idea. So bear with me as I try to wrap my head around this one – energy and associated system cycles. I have more questions than answers as my thoughts are only (maybe not even) half-baked – maybe you can help me out. Or feel free to use my ideas to add to yours!

Last week I was talking with my colleague about various major categories of ecosystem functions. Her diagram had five categories, including “energy” and “carbon”. In looking at the diagram however, I realized that this perspective separates out two components that are fundamentally part of, but not even all of, one system. Does combining the conversations of carbon sequestration and energy efficiency into a comprehensive discussion about the entire system around energy beyond just the carbon cycle, with a comparison to the natural model, provide an avenue to identify missed opportunities to balance things out?

When we talk about energy it is almost always purely in the mindset of procurement/consumption. Energy flow is one way – we dig it up/suck it up/soak it up/stick a turbine in it and gobble it up. What’s the result? We put that energy to work for us in various ways that fuel our activities – cooking, transporting, building, farming, etc. The end result is that that energy once used is gone, but the benefits we reap from consuming it might live on in the form of something made (cooked food, a product, a house, a road…). Doing more with one unit of energy is how we improve efficiency. In the sustainability realm the conversation about “energy efficiency” is sometimes shifted to “carbon management” in recognition of energy consumption (specifically when it’s carbon-based) as a component in the larger carbon cycle.

When we talk about carbon sequestration it’s often a kind of nebulous, unseen phenomenon that most people don’t understand. We know it’s part of the carbon cycle and is a component we have increasingly realized we need to address because there’s this vast amount of carbon dioxide accumulating in our atmosphere and changing our climate. So we also relate carbon sequestration to energy in the realm of the need to pull back out the carbon dioxide emitted during the burning of fossil fuels and organic matter to help balance the carbon cycle. But this discussion is not often expanded to be related to a comprehensive picture of energy beyond a discussion of carbon dioxide. And while carbon dioxide is our main concern, maybe an analysis of the whole system could identify opportunities we might otherwise miss.

In nature, energy procurement and consumption is fed by the sun, but the story of energy is not just about carbon dioxide. It involves an intricate dance of several inputs and outputs in the system enable it to stay balanced in perpetuity – everything is used and recycled with the exception of heat. Not true of our current human system. Even when we look to understand photosynthesis for the conversion of radiant heat to energy to try to replicate that natural model (solar panels), we choose to basically ignore the whole sequestering of carbon dioxide, use of water and releasing of vast amounts of oxygen, water and carbon dioxide thing that occurs in photosynthesis too – we’re just interested in the conversion of energy from one form to another. Are we missing vast components of a balanced system and thus opportunities to greatly improve our design? What if we tried to mimic the functions of the entire natural system of inputs and outputs to restore balance?  

I’ve already talked about how our energy systems have knocked the carbon cycle out of balance. So, using biomimicry, if we want to use the plant energy cycles – complete with the inputs and outputs – as a model for our energy systems, we need to understand nature’s energy system first and then draw metaphors. Easiest thing to do is to draw a picture!

The following diagram shows an overall simplified cycle of inputs and outputs involved in photosynthesis, plant growth and energy flows supporting the food web (that’s us in the “animal” block). (Photosynthesis is the process in which radiant energy is turned into chemical energy in the form of sugars, which are the building blocks for plant structure (starches) as well as immediate energy for plant growth. That stored energy in plants is the energy that gets passed up the food chain from herbivores to carnivores and everything in between.)

Nature's model

The above diagram shows how the byproducts of each step contribute to critical resources for other steps in the process, creating a closed loop with the exception of the renewable energy input of the sun and outputs of heat. It’s brilliant.

Contrast that with examples of our energy systems. The following diagrams also show simplified energy flows in human-designed systems.

Human model

Okay, so now we have an overall idea of how these both work. Notably for me, neither of the human-designed energy systems result in closed loop cycles of inputs and outputs. The solar obviously resembles more closely the procurement and conversion of radiant energy at a site, similar to a plant. I don’t know enough about energy systems to know how to wrap my head around the conversion of radiant energy to electricity vs. chemical energy – that’s above my pay grade for this blog post! So let’s keep it simple for now (but if you know, let me know a good resource to find out more!).

In looking at the coal-fired power plant example, you’ll notice that the inputs include coal, oxygen (O2) (oxygen needed for combustion of coal) and water. In looking at the energy cycle of the food web, you’ll notice that the inputs and outputs are similar to that of an animal – animals consume glucose (stored energy) from plants or other animals that have eaten plants. Animals also consume oxygen which is needed for chemical reactions that result in growth (for the metabolic process). So we might draw the following metaphors included in the above diagram:

  • Oxygen = oxygen (needed for a chemical reaction
  • Coal = stored chemical energy (sugars) (this is the fuel)
  • Power plant = animal
  • Use of electricity to build structures = metabolism (growth)
  • Battery storage = maybe ATP? (adenosine triphosphate, or “the ‘molecular unit of currency’ of intracellular energy transfer”)

(Since I have not spent more than today on this, my metaphors might be off. What do you think?)

If you agree for now that we might draw a metaphor between animals and our human-made power plants, what does that mean for our overall cycle? To me it means our current design is missing a plan for the majority of the system needed to maintain the required balance for stable system functioning (as evidenced through climate change). The question is, how can we think about our energy systems more holistically and model them after the original power plants and energy webs?

If we go with the above, and our current energy system design only includes the “animal” component of the larger system, what if we expand our discussion of “energy” to include the entire cycle of inputs and outputs to understand how we can design an energy system that fits within the natural balance to maintain climate stability? Who uses energy in the system and how? What do they produce as a byproduct of using that energy? What questions does that raise about our systems?

  • Need for balance of inputs & outputs: the consumption and sequestration of carbon dioxide (CO2) and water (H2O) with the release of oxygen (O2), carbon dioxide and water. If fossil fuels and other biomaterials aren’t burned for energy at all, obviously this changes the equation and reduces the burden on the system to sequester carbon dioxide (once restored to a balance from the current state, and this of course ignores whatever inputs and outputs for making the product (e.g., a solar panel)). But since we aren’t flipping the switch on fossil fuels any day soon, we need to find ways to bring the carbon cycle back into balance. And what about the release of oxygen in the process – what part of our system might generate oxygen as a byproduct?
  • Forms of energy: What would a system look like that relies on local real-time renewable conversion of radiant energy to, and storage of, chemical energy that is in a form readily accessible for use (as opposed to use of non-renewable storage of radiant energy captured in fossil fuels and turned to electricity)? Lots of solar cells (produced with solar energy sources!) and batteries? Any other options?
  • If plants (real plants, not human power plants!) are the consumers of carbon dioxide in our natural model, what would be the equivalent of a plant in human energy systems? Manufacturers creating raw materials? Does that reveal the missing link in our system – manufacturers who convert radiant energy on site to fuel their own manufacturing processes (core needs) as well as build raw materials (which form the basis of structures) from carbon dioxide? If so, we clearly need to rethink the potential of a hugely (over) abundant (free!) resource – carbon dioxide – as a building block for materials. Some materials manufacturers are already thinking this way, but if this is the key to balancing the cycle, we need some serious widespread innovation using carbon as a fundamental building block of many more our materials.
  • Can we use the energy flow of a food web to think more about how the supply chain beyond materials manufacturers plays a role – what’s the equivalent of a herbivore (e.g., a manufacturer turning materials into some form of product?), omnivore or carnivore in human systems? Do they exist in the same type of balance we see in land-based food systems (i.e., does it turn out we have an overabundance of “carnivores” requiring high energy inputs?)? If so, by increasing energy efficiency are we creating more “herbivores” ??
  • We’ve cut down a lot of plants – trees to be more exact. Whenever you see green, you are looking at the sequestration of carbon dioxide in materials. It would be foolish to think we shouldn’t also be restoring natural systems to leverage their ability to pull carbon out of the atmosphere. But to what extent? This thinking is reflected in E.O. Wilson’s Half Earth initiative.

Oh, so many more questions than answers! 🙂

My brain is spinning so we’ll have to leave additional pondering for another day. Next steps for me if I were to pursue this further would be to do a deep dive into the science to find out more specifically how this works each step of the way. Next I would then recheck my metaphors and make sure that everything actually makes sense – for every single part of the system. This is where the fun happens – you never know what you’ll find out.

What flaws do you see in my thinking? If any, how would you rewrite those metaphors in line with your thinking? What can you add? How can we build on this? How might you go deeper? What are the right metaphors? What is the natural model equivalent to “electricity”? Or am I totally off base? I’m excited to see what comes out in the Project Drawdown initiative to see if/how their recommendations line up (or not) with this thinking.

Biomimicry: Inspiration, Jackpot, Failure & Hope

While walking in the grocery store last Sunday, the shelves were empty in several places where they hadn’t been restocked. The bare shelves were just a reflection of a busy day, but the thought crossed my mind, what if access to choice in foods was like this everyday? I am lucky – spoiled rotten really – but for many in my own country, let alone around the world, food insecurity is a reality. (Food insecurity is the set of circumstances that prevent your access to food such as lack of money, unemployment, lack of access to transportation and health problems)

Can you imagine being hungry everyday? Or knowing that you can buy food now, but at the end of the month when your bank account runs dry, you may have to send your kids to school hungry? Or choosing between (for the same price) a box of processed mac ‘n’ cheese that could feed your family and a healthy apple that could only be a snack? Or stand in a long line to pick up free food from a food pantry two days after you ran out of food? Food insecurity has no race, ethnicity or class. This is happening to people in your own community, maybe to your unemployed neighbor who lost their job 6 months ago. It breaks my heart and nags at me. So I thought I’d share my experience with using biomimicry to develop solutions to this problem in the hopes I might inspire you to do the same with something you care about.

Art of Science Learning Innovation Incubator

To someone who loves food in a country with an excess of it (approximately ⅓ of our food goes to waste), the fact that approximately 1 in 6 people in the US aren’t necessarily sure where their next meal will come from is simply abhorrent. For this reason and to expand my skills in the innovation process for a good cause, I participated in the 2014  Art of Science Learning (AoSL) year-long Chicago Innovation Incubator focused on urban nutrition challenges.

The innovation incubator was a lesson in the innovation process, but even more than that, I increasingly realized through the weekly presentations by a wide variety of people working on this issue in Chicago that extremely well-intentioned knights riding in on white horses with solutions aimed at helping communities most often really don’t change anything in the long term. Change must be fostered, generated and supported from within communities to be sustained. Bringing in fresh food into a neighborhood doesn’t change the neighbor’s employment status, transportation options, nor the food choices that person makes. In short, the underlying challenges that cause food insecurity and sustainable affordable access to fresh foods are still there, even after the knights ride off into the sunset.

How would nature…?

It just so happens that I started my Biomimicry Professional program in the fall of 2013, and started my first biomimicry thinking course in January 2014. To, as Dayna Baumeister likes to say, “feed two birds with one scone”, I used my biomimicry thinking homework to find natural models that might inform and inspire my brainstorming around urban nutrition challenges in the innovation incubator. I was not disappointed.

I started out with the question, How does nature self-organize to create a complex ecosystem? After my biological model brainstorming, I settled on mychorrizal fungal networks. Mycorrhizal fungal networks (“mycorrhizal networks “) provide the foundational structure in which feedback loops allow diverse species to interact and direct resources where needed, resulting in a complex self-organized ecosystem. Mycorrhizal networks consist of interconnected mycelium of any number of fungus species that also connect the roots of different plants. The mycorrhizal network fungi obtain part of all of their carbon from the plant species linked into the network, while the plants obtain and the nutrients the mycelium take up through the soil, resulting in a mutualistic relationship.

A prime example of this relationship between the networks and plant species is the presence of mycorrhizal networks in the interior Douglas-fir (Pseudostuga menziesii var. glauca) forests of North America. The networks play an integral role in these self-organized complex, adaptive systems. The mycorrhizal networks, which connect most trees in a dry interior Douglas-fir forest, provide a shared infrastructure through which the network shuttles carbon, nutrients or water from older to young trees according to need through positive and negative feedback loops. The largest, oldest trees serve as hubs, much like the hub of a spoked wheel, where younger trees establish within the mycorrhizal network of the old trees. Survival of these establishing trees is greatly enhanced when they are linked into the mycorrhizal network of the old trees as seen particularly after a disturbance in the subsequent self-organization that occurs to regenerate the forest facilitated by the foundational mycorrhizal network. (1)

The example of the mycorrhizal network’s role in the Douglas-fir ecosystem can be extrapolated to other ecosystems as well – the networks provide an incredible tool through which distinct species can interact and share resources according to need.

The deep function of this network that I focused on for the urban nutrition challenge was the redistribution resources. In a nutshell (design principle), the use of positive and negative feedback loops to facilitate efficient exchange and redistribution of resources according to need to diverse entities via an interconnected network that contains dispersed resource-rich hubs results in the emergence of more stable, resilient communities and allows for rapid regeneration after periods of disturbance.

The biomimicry-based solution

Understanding mycorrhizal network design principles in combination with Life’s Principles gave me a unique perspective on the challenges that no one else in the program came to on their own. Being a systems thinker, the ideas I brainstormed from this design principle were grand, and included an internet-based platform that facilitated transparent real-time exchange of fresh foods (aka, resources) from a wide variety of producers to a wide variety of consumers (diverse species) on a regional scale (ecosystem). (To be more aligned with ecosystem functions, I also think facilitation of movement of organic materials for composting within the same regional scale on the same platform would help to close the material loops!).

I focused on the idea that seedlings have a better survival rate when tapped into the network, and that feedback loops signaling the need for resources to resource hubs and subsequent delivery of those resources improves chances for survival. The platform could benefit different scales – business startups and individuals needing to tap into the system. The platform would enable startups to find and tap into resources from and develop relationships with established resource hubs within the region. At the individual level, the platform would provide the link to enable people to find where fresh food is being sold within a defined area when they are looking for it, rate fresh foods at different locations, alert people when food had run out (if earlier than the stated time of sale), etc. Further developing how this communication platform would work at all levels would allow for self-organization of the system to efficiently distribute resources – the development and growth would come from within the system.

Many, many people are working to reduce food waste on the delivery side and are making impressive strides in this area. But we figured while it’s great to make more food available for free that would otherwise be wasted, if few people know it’s there, have you really achieved anything? So to meet our goal of developing a minimally viable product within the incubator’s timeframe, we focused in on one critical aspect of the food system that most looking to solve urban nutrition challenges and food waste do not focus on – the consumer’s ability to know where food is when they need it. 

As indicated above, survival of young trees is improved when they are tapped into the mycorrhizal fungal network. If, using this metaphor of the the internet as the fungal network and individual people as trees, being tapped into the network that serves as the pathway for getting resources is critical to one’s survival, especially in hard times. The reality is that many people living with food insecurity and hunger do not have the means or access to be tapped into our food system, and therefore suffer the consequences. 

After our team dug deeper, we found out that there is not a viable quick way to let these same people know where food will be, and when it will be there. Word of changes to food pantry schedules, new urban farm stands and farmers markets, new businesses, must mainly be spread through word of mouth and through community bulletin boards. This inefficiency in communication hinders people’s ability to know if and where food is available when they need it. It also potentially hinders food pantry and urban farmer’s ability to give away or sell all their food, resulting in a loss of potential to reduce food waste or grow local homegrown businesses. In addition, the fact that for most people food insecurity is cyclical, meaning it might just be a few months that people need help spread out over a year. So being up-to-date about opportunities to access free or affordable local fresh food can be difficult when the person is only looking for resources on a sporadic basis (due to a “disturbance” in his/her life).

Our idea targeted this disconnection and provided a way to bring people back into their local fresh food system using technology already available to the targeted group. A real-time communication platform that facilitates the distribution of information (instead of the distribution of food itself) from those who have it to those who need it, enables users to meet their own needs on their own parameters. Again, looking at two scales, it facilitates the establishment of businesses such as urban farms or facilitate the ability of food pantries to fulfill their mission by increasing their ability to communicate directly with consumers previously outside of their communication channels, increasing sales or people reached. At the smaller scale, individuals increase their ability to find food when they need it in their local area, supporting local added value. The communication platform does not dictate anything, but enables the community to self-organize, strengthening feedback loops around who is providing food, who is looking for food, what kind of food they are looking for, and when they need it. This presents the opportunity to create conditions to interact in concert to move toward an enriched system (the “Self-organize” life’s principle).

For this reason we developed a MVP for a communication platform that enables people to get updates and reminders about where food will be and when it will be there, using existing technology currently available to a majority of people in this situation (e.g., if we developed a mobile app, and only 20% of our target audience had smart phones, we would fail to bring our target audience into the system). The tool would be flexible and allow people to create their own parameters for what and when and how they wanted to receive information. After talking and working with food pantries and consumers to beta test our idea, we realized we had developed a prototype that hit upon a real unmet need in the market.

The reality of the innovation process

So what happened? Our team did not have the time (for reasons specific to each of us – existing careers, school, family, etc.) to put into making this product a reality, and figuring out viable funding scenarios was difficult. Without a dedicated champion to move it forward, the idea and work we did fizzled.

I also found that being the only person who understood the biology and method I had used to generate the initial ideas, it was difficult to continue to use the biomimicry methodology and science to further inform, develop and expand upon the idea. I think if I had worked with a team receptive and interested in using biomimicry, we could have arrived at an even more well-rounded solution. As I have said before, using high-level design principles is great for ideation, but really understanding the biology from the beginning – taking the time to be very specific about each piece, particularly when working with system challenges – creates a depth of understanding and true potential for innovative ideas that might change the world. This gives me hope.

Were I to go back and revisit this effort (with a willing team!), I would begin again with doing a deep dive into exactly (as far as scientists currently know) how these mycorrhizal fungal networks work – what resources are being shared, how signaling works, how the interface between the roots of plants and the fibers of fungus functions, etc. I would then compare that to the work I did to understand our food system components and their interactions and be very detailed about the metaphors I would draw between the two systems. In doing that, the differences in functions, strategies and mechanisms – and the potential for our system to function differently and perhaps better for all involved – would emerge. It would then of course be up to us to make it happen.

So if you are thinking of using biomimicry to help solve a challenge such as for the Biomimicry Institute’s Global Design Challenge on Climate Change, I encourage you to find a team from the start that is on board with using the biomimicry methodology and start with and stick to the science as you develop your idea. It’s not easy, and certainly factors way beyond the innovation methodology can and do scuttle a project. But if we keep trying, we just might change our story.

 

(1) Sources:

Beiler, K. J., Durall, D. M., Simard, S. W., Maxwell, S. A. and Kretzer, A. M. (2010), Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytologist, 185: 543–553. doi:10.1111/j.1469-8137.2009.03069.x

Mycorrhizal networks and learning” by David Wiley. iterating toward progress blog. JULY 21, 2011. Accessed January 2014.