Inspiration to Brainstorming: Biomimcry Global Design Challenge – Climate Change

Following up on something I have been thinking about since my post on inspiration for the Global Biomimicry Design Challenge on climate change, I thought I’d share an example of my thought process on using natural models for initial brainstorming. This is my first pass and I haven’t dug deep into the science, but am testing the waters on a high-level idea. So bear with me as I try to wrap my head around this one – energy and associated system cycles. I have more questions than answers as my thoughts are only (maybe not even) half-baked – maybe you can help me out. Or feel free to use my ideas to add to yours!

Last week I was talking with my colleague about various major categories of ecosystem functions. Her diagram had five categories, including “energy” and “carbon”. In looking at the diagram however, I realized that this perspective separates out two components that are fundamentally part of, but not even all of, one system. Does combining the conversations of carbon sequestration and energy efficiency into a comprehensive discussion about the entire system around energy beyond just the carbon cycle, with a comparison to the natural model, provide an avenue to identify missed opportunities to balance things out?

When we talk about energy it is almost always purely in the mindset of procurement/consumption. Energy flow is one way – we dig it up/suck it up/soak it up/stick a turbine in it and gobble it up. What’s the result? We put that energy to work for us in various ways that fuel our activities – cooking, transporting, building, farming, etc. The end result is that that energy once used is gone, but the benefits we reap from consuming it might live on in the form of something made (cooked food, a product, a house, a road…). Doing more with one unit of energy is how we improve efficiency. In the sustainability realm the conversation about “energy efficiency” is sometimes shifted to “carbon management” in recognition of energy consumption (specifically when it’s carbon-based) as a component in the larger carbon cycle.

When we talk about carbon sequestration it’s often a kind of nebulous, unseen phenomenon that most people don’t understand. We know it’s part of the carbon cycle and is a component we have increasingly realized we need to address because there’s this vast amount of carbon dioxide accumulating in our atmosphere and changing our climate. So we also relate carbon sequestration to energy in the realm of the need to pull back out the carbon dioxide emitted during the burning of fossil fuels and organic matter to help balance the carbon cycle. But this discussion is not often expanded to be related to a comprehensive picture of energy beyond a discussion of carbon dioxide. And while carbon dioxide is our main concern, maybe an analysis of the whole system could identify opportunities we might otherwise miss.

In nature, energy procurement and consumption is fed by the sun, but the story of energy is not just about carbon dioxide. It involves an intricate dance of several inputs and outputs in the system enable it to stay balanced in perpetuity – everything is used and recycled with the exception of heat. Not true of our current human system. Even when we look to understand photosynthesis for the conversion of radiant heat to energy to try to replicate that natural model (solar panels), we choose to basically ignore the whole sequestering of carbon dioxide, use of water and releasing of vast amounts of oxygen, water and carbon dioxide thing that occurs in photosynthesis too – we’re just interested in the conversion of energy from one form to another. Are we missing vast components of a balanced system and thus opportunities to greatly improve our design? What if we tried to mimic the functions of the entire natural system of inputs and outputs to restore balance?  

I’ve already talked about how our energy systems have knocked the carbon cycle out of balance. So, using biomimicry, if we want to use the plant energy cycles – complete with the inputs and outputs – as a model for our energy systems, we need to understand nature’s energy system first and then draw metaphors. Easiest thing to do is to draw a picture!

The following diagram shows an overall simplified cycle of inputs and outputs involved in photosynthesis, plant growth and energy flows supporting the food web (that’s us in the “animal” block). (Photosynthesis is the process in which radiant energy is turned into chemical energy in the form of sugars, which are the building blocks for plant structure (starches) as well as immediate energy for plant growth. That stored energy in plants is the energy that gets passed up the food chain from herbivores to carnivores and everything in between.)

Nature's model

The above diagram shows how the byproducts of each step contribute to critical resources for other steps in the process, creating a closed loop with the exception of the renewable energy input of the sun and outputs of heat. It’s brilliant.

Contrast that with examples of our energy systems. The following diagrams also show simplified energy flows in human-designed systems.

Human model

Okay, so now we have an overall idea of how these both work. Notably for me, neither of the human-designed energy systems result in closed loop cycles of inputs and outputs. The solar obviously resembles more closely the procurement and conversion of radiant energy at a site, similar to a plant. I don’t know enough about energy systems to know how to wrap my head around the conversion of radiant energy to electricity vs. chemical energy – that’s above my pay grade for this blog post! So let’s keep it simple for now (but if you know, let me know a good resource to find out more!).

In looking at the coal-fired power plant example, you’ll notice that the inputs include coal, oxygen (O2) (oxygen needed for combustion of coal) and water. In looking at the energy cycle of the food web, you’ll notice that the inputs and outputs are similar to that of an animal – animals consume glucose (stored energy) from plants or other animals that have eaten plants. Animals also consume oxygen which is needed for chemical reactions that result in growth (for the metabolic process). So we might draw the following metaphors included in the above diagram:

  • Oxygen = oxygen (needed for a chemical reaction
  • Coal = stored chemical energy (sugars) (this is the fuel)
  • Power plant = animal
  • Use of electricity to build structures = metabolism (growth)
  • Battery storage = maybe ATP? (adenosine triphosphate, or “the ‘molecular unit of currency’ of intracellular energy transfer”)

(Since I have not spent more than today on this, my metaphors might be off. What do you think?)

If you agree for now that we might draw a metaphor between animals and our human-made power plants, what does that mean for our overall cycle? To me it means our current design is missing a plan for the majority of the system needed to maintain the required balance for stable system functioning (as evidenced through climate change). The question is, how can we think about our energy systems more holistically and model them after the original power plants and energy webs?

If we go with the above, and our current energy system design only includes the “animal” component of the larger system, what if we expand our discussion of “energy” to include the entire cycle of inputs and outputs to understand how we can design an energy system that fits within the natural balance to maintain climate stability? Who uses energy in the system and how? What do they produce as a byproduct of using that energy? What questions does that raise about our systems?

  • Need for balance of inputs & outputs: the consumption and sequestration of carbon dioxide (CO2) and water (H2O) with the release of oxygen (O2), carbon dioxide and water. If fossil fuels and other biomaterials aren’t burned for energy at all, obviously this changes the equation and reduces the burden on the system to sequester carbon dioxide (once restored to a balance from the current state, and this of course ignores whatever inputs and outputs for making the product (e.g., a solar panel)). But since we aren’t flipping the switch on fossil fuels any day soon, we need to find ways to bring the carbon cycle back into balance. And what about the release of oxygen in the process – what part of our system might generate oxygen as a byproduct?
  • Forms of energy: What would a system look like that relies on local real-time renewable conversion of radiant energy to, and storage of, chemical energy that is in a form readily accessible for use (as opposed to use of non-renewable storage of radiant energy captured in fossil fuels and turned to electricity)? Lots of solar cells (produced with solar energy sources!) and batteries? Any other options?
  • If plants (real plants, not human power plants!) are the consumers of carbon dioxide in our natural model, what would be the equivalent of a plant in human energy systems? Manufacturers creating raw materials? Does that reveal the missing link in our system – manufacturers who convert radiant energy on site to fuel their own manufacturing processes (core needs) as well as build raw materials (which form the basis of structures) from carbon dioxide? If so, we clearly need to rethink the potential of a hugely (over) abundant (free!) resource – carbon dioxide – as a building block for materials. Some materials manufacturers are already thinking this way, but if this is the key to balancing the cycle, we need some serious widespread innovation using carbon as a fundamental building block of many more our materials.
  • Can we use the energy flow of a food web to think more about how the supply chain beyond materials manufacturers plays a role – what’s the equivalent of a herbivore (e.g., a manufacturer turning materials into some form of product?), omnivore or carnivore in human systems? Do they exist in the same type of balance we see in land-based food systems (i.e., does it turn out we have an overabundance of “carnivores” requiring high energy inputs?)? If so, by increasing energy efficiency are we creating more “herbivores” ??
  • We’ve cut down a lot of plants – trees to be more exact. Whenever you see green, you are looking at the sequestration of carbon dioxide in materials. It would be foolish to think we shouldn’t also be restoring natural systems to leverage their ability to pull carbon out of the atmosphere. But to what extent? This thinking is reflected in E.O. Wilson’s Half Earth initiative.

Oh, so many more questions than answers! 🙂

My brain is spinning so we’ll have to leave additional pondering for another day. Next steps for me if I were to pursue this further would be to do a deep dive into the science to find out more specifically how this works each step of the way. Next I would then recheck my metaphors and make sure that everything actually makes sense – for every single part of the system. This is where the fun happens – you never know what you’ll find out.

What flaws do you see in my thinking? If any, how would you rewrite those metaphors in line with your thinking? What can you add? How can we build on this? How might you go deeper? What are the right metaphors? What is the natural model equivalent to “electricity”? Or am I totally off base? I’m excited to see what comes out in the Project Drawdown initiative to see if/how their recommendations line up (or not) with this thinking.

Leave a Reply

Your email address will not be published. Required fields are marked *